J.7 TSF physical protection (FPT_PHP)

TSF physical protection components refer to restrictions on unauthorised physical access to the TSF, and to the deterrence of, and resistance to, unauthorised physical modification, or substitution of the TSF.

The requirements in this family ensure that the TSF is protected from physical tampering and interference. Satisfying the requirements of these components results in the TSF being packaged and used in such a manner that physical tampering is detectable, or resistance to physical tampering is measurable based on defined work factors. Without these components, the protection functions of a TSF lose their effectiveness in environments where physical damage cannot be prevented. This component also provides requirements regarding how the TSF must respond to physical tampering attempts.

Examples of physical tampering scenarios include mechanical attack, radiation, changing the temperature.

User notes

It is acceptable for the functions that are available to an authorised user for detecting physical tampering to be available only in an off-line or maintenance mode. Controls should be in place to limit access during such modes to authorised users. As the TSF may not be "operational" during those modes, it may not be able to provide normal enforcement for authorised user access. The physical implementation of a TOE might consist of several structures: for example an outer shielding, cards, and chips. This set of "elements" as a whole must protect (protect, notify and resist) the TSF from physical tampering. This does not mean that all devices must provide these features, but the complete physical construct as a whole should.

Although there is only minimal auditing associating with these components, this is solely because there is the potential that the detection and alarm mechanisms may be implemented completely in hardware, below the level of interaction with an audit subsystem (for example, a hardware-based detection system based on breaking a circuit and lighting a light emitting diode (LED) if the circuit is broken when a button is pressed by the authorised user). Nevertheless, a PP/ST author may determine that for a particular anticipated threat environment, there is a need to audit physical tampering. If this is the case, the PP/ST author should include appropriate requirements in the list of audit events. Note that inclusion of these requirements may have implications on the hardware design and its interface to the software.